дыхание - Definition. Was ist дыхание
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist дыхание - definition

ГАЗООБМЕН МЕЖДУ КРОВЬЮ И ВОЗДУХОМ, ДВИЖЕНИЕ ДЛЯ НЕГО
Внешнее дыхание; Респирация
  • воздушным мешкам]] птиц
  • К органам дыхания у рыб относятся [[жабры]]
  • главный бронх]]; 11 — [[гортань]]
  • жизненная ёмкость]], TV — дыхательный объём, IRV — резервный объём вдоха, ERV — резервный объём выдоха, RV — остаточный объём, IC — ёмкость максимального вдоха, FRC — функциональная остаточная ёмкость. Красной линией — спирограмма спокойного дыхания, максимальных выдоха и вдоха
  • МРТ]] грудной клетки
  • Различия внешнего дыхания человека, птиц и насекомых

ДЫХАНИЕ         
совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для их жизнедеятельности (т. н. клеточное, или тканевое, дыхание). У одноклеточных животных и низших растений обмен газов при дыхании происходит путем диффузии через поверхность клеток, у высших растений - через межклетники, пронизывающие все их тело. У многоклеточных животных (и человека) внешнее дыхание осуществляется специальными органами дыхания, а тканевое - обеспечивается кровью.
ДЫХАНИЕ         
Обычно дыхание ассоциируется с вдохом и выдохом, т.е. дыхательными движениями, необходимыми для вентиляции легких у наземных позвоночных. Однако у большинства организмов ни этих движений, ни самих легких нет, поэтому более общее определение должно по крайней мере включать жизненно важный газообмен организма со средой - поглощение из нее кислорода (O2) и выделение диоксида углерода (углекислого газа, CO2). Но точнее всего называть дыханием процесс, происходящий на молекулярном уровне, - окисление клеткой питательных веществ с высвобождением энергии, запасаемой в химических связях аденозинтрифосфата (АТФ) и частично рассеиваемой при этом в форме тепла (см. МЕТАБОЛИЗМ).
Физиология дыхания изучает в основном механизмы именно газообмена, т.е. поглощения кислорода и выделения углекислого газа через дыхательные поверхности, например в легких, а клеточным дыханием занимается биохимия.
Окислением называется процесс потери атомом или молекулой электрона. Обратная реакция, т.е. присоединение электрона, определяется как восстановление. Электроны, теряемые в ходе окисления их "донором", присоединяются к "акцептору", восстанавливая его, поэтому в любом случае правильнее говорить об окислительно-восстановительных реакциях. Акцептор должен обладать высоким сродством к электронам. Таким свойством обладает кислород, который и выступает в роли окислителя питательных веществ, или, точнее, "дыхательных субстратов", у большинства организмов, хотя в принципе его может заменить другое вещество, например сульфат или нитрат у ряда бактерий. Атом водорода состоит из протона и электрона, поэтому в биологических системах окисление часто подразумевает потерю этого атома (с электроном), а восстановление - его присоединение.
Основатель современной химии Антуан Лавуазье (1743-1794) первым понял, что принципиальных различий между окислением углеводов в клетке и горением дров в печке нет. В обоих случаях органические вещества разрушаются при участии кислорода до углекислого газа и воды с выделением энергии. В клетке окисление идет поэтапно и строго контролируется, поэтому часть энергии не выделяется сразу в виде тепла, а запасается в форме молекул АТФ, которые затем организм использует в качестве топлива для самых разнообразных процессов, включая перенос ионов через мембраны, сокращение мышц, деление клетки, синтез жизненно важных веществ и т.п. Клеточное дыхание включает в себя последовательность биохимических реакций, объединяемых в т.н. "метаболические пути", например гликолиз, окисление пировиноградной кислоты, цикл трикарбоновых кислот, электронтранспортную цепь и др. Гликолиз протекает в цитозоле, т.е. жидкой внутренней среде клетки, не оформленной в определенные структуры. Другие названные выше реакции происходят у всех эукариот внутри митохондрий. Это микроскопические, окруженные мембранами, способные к самовоспроизведению тельца, плавающие в цитозоле и обычно называемые энергетическими станциями клетки. Полное окисление глюкозы до диоксида углерода приводит к образованию 32 молекул АТФ. Превращение глюкозы в две молекулы пирувата дает только две из этих 32 молекул АТФ и не требует участия молекулярного кислорода. Остальная часть АТФ может затем образовываться при окислении пировиноградной кислоты в цикле трикарбоновых кислот и в процессе электронов по электронтранспортной цепи - уже с использованием кислорода.
В отсутствие кислорода пировиноградная кислота может восстанавливаться до молочной или ацетальдегида, а последний - превращаться в этанол с выделением углекислого газа, например при брожении. Молочная кислота образуется при дефиците кислорода в тканях большинства животных, а этанол дают некоторые рыбы, но главным образом бактерии и дрожжи. Расщепление углеводов (глюкозы) с образованием этих веществ нередко называют анаэробным дыханием. Присутствие кислорода подавляет его в большинстве клеток - в таких условиях пировиноградная кислота окисляется дальше. Это явление - ингибирование кислородом анаэробного использования глюкозы (при этом эффективность использования глюкозы обычно возрастает, поскольку одна ее молекула начинает давать больше АТФ) - называется эффектом Пастера в честь французского химика и биолога, основателя бактериологии Луи Пастера (1822-1895).
Дыхательный коэффициент (ДК) - это отношение объема CO2, выделенного организмом, к объему поглощенного им за то же время O2. При метаболизации, т.е. расщеплении в процессе клеточного дыхания, жиров, углеводов и белков ДК составляет соответственно 0,7, 1,0 и 0,8 (различия обусловлены разным соотношением атомов углерода и кислорода в молекулах этих трех классов соединений). Воды, образующейся при обмене веществ (0,4-1 мл H2O на 1 г метаболизированной пищи), обычно недостаточно для возмещения ее потерь организмом, но это основное ее количество, используемое некоторыми обитающими в пустынях зверьками и птицами, а также морскими млекопитающими, которые неспособны напиться соленой водой, поскольку их организм не в состоянии затем выделить поступившую вместе с ней соль. Потребление кислорода обычно соответствует его немедленному использованию, так как возможности его запасания организмом весьма невелики. Диоксид углерода, напротив, накапливается в довольно больших количествах, поэтому его выделение может отражать как мгновенную продукцию, так и изменение внутренних запасов. Однако обычно принимают, что все выделяемое количество CO2 образовалось непосредственно в данный момент. Близость ДК к единице означает, что практически все молекулы O2, поглощаемые организмом из окружающей среды, используются для дыхания и дают такое же число выделяемых в среду молекул CO2.
У очень мелких животных (диаметром менее 0,5 мм) перенос O2 от поверхности тела к митохондриям внутри клеток и CO2 в обратном направлении происходит путем простой диффузии. Однако скорость ее очень низка, поэтому с увеличением размеров тела эволюционировали и механизмы транспорта газов внутри организма. У большинства видов для этого используется циркуляторная (кровеносная) система, а у насекомых и некоторых других членистоногих и близких к ним форм - трахейная. Скорость диффузии газов в воздухе в 10 000 раз выше, чем в тканях; на этом основана работа трахейной системы, которая устраняет необходимость в переносе O2 и CO2 кровью. Трахеи представляют собой тонкостенные заполненные воздухом трубочки, сеть которых пронизывает все тело и обеспечивает быструю диффузию газов между внешней средой и клетками. У некоторых крупных и очень активных насекомых трахейная система вентилируется с помощью мышечных сокращений. Трахейнодышащие животные обладают и циркуляторной системой, заполненной т.н. гемолимфой, однако в транспорте газов она практически не участвует, выполняя другие функции, в частности перенос растворенных питательных веществ, гормонов и конечных продуктов обмена веществ.
Транспорт O2 и CO2 между внешней средой и клетками тканей у животных, использующих для этого кровеносную систему, можно разделить на несколько этапов: (1) вентиляция (омывание) дыхательной поверхности воздухом или водой; (2) диффузия O2 и CO2 через дыхательную поверхность (в противоположных направлениях); (3) перенос кровью O2 от дыхательной поверхности к тканям и CO2 в обратном направлении; (4) диффузия O2 и CO2 между кровью и тканями через стенки капилляров (в противоположных направлениях). По мере увеличения в ходе эволюции размеров животных их газообмен с внешней средой интенсифицируется путем развития специальных дыхательных поверхностей, характеризующихся не только большой площадью, но и малой толщиной барьера между кровью и внешней средой, что облегчает диффузию газов. Вентиляция, т.е. активное поддержание с внешней стороны дыхательной поверхности потока воздуха или воды, обеспечивает разницу (градиент) концентраций дыхательных газов внутри и вне организма, ускоряющую диффузию. Строение дыхательной поверхности и механизм вентиляции зависят от природы окружающей среды. Для дыхания воздухом используются легкие, в которые ритмично нагнетается воздух (вдох) с последующим выталкиванием наружу образовавшейся в них газовой смеси (выдох). Тонкие дыхательные мембраны легких находятся внутри тела: это защищает их от повреждений, одновременно позволяя регулировать связанные с вентиляцией потери организмом воды (в виде пара) и тепла. Газообмен в водной среде происходит через жабры; они омываются однонаправленным потоком воды непрерывно. Последнее связано с тем, что вода гораздо плотнее воздуха, концентрация O2 в ней намного ниже, а диффузия газов гораздо медленнее. В таких условиях периодически заполняемая и опорожняемая структура типа легких потребовала бы для обеспечения достаточной скорости газообмена слишком много энергии и места.
Перфузия дыхательной поверхности, т.е. омывание ее кровью, уносит диффундировавший O2 к другим частям тела, а от них приносит к этой поверхности образовавшийся в тканях CO2. Транспорт газов кровью происходит по механизму т.н. объемного потока, т.е. за счет движения текучей среды, а не молекулярной диффузии. Количество переносимых в единицу времени O2 и CO2 увеличивается благодаря присутствию в крови дыхательного пигмента (например, гемоглобина), который повышает концентрацию в ней O2 (кислородную емкость крови) в 30 - 100 раз, способствуя поглощению его в легких и высвобождению в тканях, а одновременно и движению в противоположном направлении CO2. Дыхательные пигменты - это сложные белки, содержащие в своем составе ионы металлов. Молекула гемоглобина состоит из белка глобина и четырех железосодержащих гемовых групп. Кислород обратимо связывается с двухвалентным ионом железа этой группы, превращая гемоглобин в т.н. оксигенированную форму - оксигемоглобин, имеющий ярко-красный цвет. Не связанный с кислородом гемоглобин обозначают как дезоксигемоглобин; его цвет темно-бордовый. Оксид углерода (угарный газ, CO) даже при очень низких концентрациях практически необратимо соединяется с гемоглобином, образуя карбоксигемоглобин. Поскольку карбоксигемоглобин уже не способен оксигенироваться, происходит снижение кислородной емкости крови. В результате вдыхание угарного газа приводит к асфиксии из-за нехватки кислорода в организме. Именно поэтому CO, образующийся при неполном сгорании топлива, например в двигателе автомобиля, чрезвычайно токсичен.
Кислород, поступивший в кровь в легких или жабрах, должен быть отдан тканям. Потребление O2 митохондриями приводит к тому, что в клетках его всегда очень мало; это создает большой градиент его концентраций между кровью и тканями, обеспечивающий поступление в них O2. И напротив, CO2 непрерывно образуется тканями, поэтому его концентрация в них выше, чем в крови, так что перенос CO2 происходит в обратном направлении. Диоксид углерода, соединяясь с водой (гидратируясь), дает угольную кислоту ( H2 CO3), молекула которой диссоциирует на ион бикарбоната ( HCO3-) и протон ( H+). Следовательно, повышение концентрации CO2 в растворе ведет к снижению pH (этот показатель - отрицательный логарифм концентрации H+). Основная часть поступающего в кровь CO2 растворяется, снижая ее pH, а небольшая его доля обратимо связывается с аминогруппами белковой части гемоглобина, образуя карбаминогемоглобин (карбогемоглобин). Падение pH среды и присоединение CO2 уменьшают сродство гемоглобина к O2, что способствует высвобождению последнего в раствор (плазму крови) и поступлению оттуда в окружающие ткани. Обратная картина наблюдается при удалении из крови CO2 около дыхательной поверхности. Происходящая здесь оксигенация гемоглобина приводит к высвобождению из его молекулы протонов, что подавляет диссоциацию угольной кислоты на ионы и ведет к ее разложению на воду и диоксид углерода; последний удаляется из организма через дыхательную поверхность. В тканях же стимулируется обратный процесс: дезоксигенация гемоглобина (потеря им кислорода) способствует гидратации CO2 и поступлению его в кровь. Гемоглобин содержится в эритроцитах вместе с ферментом карбоангидразой, который катализирует процессы гидратации и дегидратации CO2, ускоряя их примерно в 10 000 раз. В результате основная часть бикарбоната образуется и распадается внутри эритроцитов. Повышение или понижение в них концентрации бикарбоната в ходе этих реакций компенсируется его переносом через клеточную мембрану, происходящим в обмен на ионы хлора, - они перемещаются в противоположном направлении. Такой встречный транспорт (антипорт) обеспечивается у большинства позвоночных высоким содержанием в мембране эритроцитов белкового переносчика анионов. Благодаря тому, что карбоангидраза и гемоглобин заключены в эритроцитах, колебания концентрации протонов при гидратации CO2/дегидратации угольной кислоты, локализованные внутри этих клеток, оказывают максимальное воздействие на сродство гемоглобина к O2, т.е. ослабляют их связь, способствуя высвобождению O2, при росте концентрации свободного CO2 (в бедных кислородом тканях) и наоборот. Таким образом обеспечивается тесная взаимозависимость (сопряжение) переноса O2 и CO2, осуществляемого кровью.
Дыхательный пигмент беспозвоночных - сложный белок гемоцианин - содержит не железо, а медь и находится не в клетках крови, а растворен в плазме. В оксигенированной форме он ярко-голубой, в дезоксигенированной - бесцветный. У животных, использующих гемоцианин в качестве дыхательного пигмента, перенос O2 кровью не так тесно сопряжен с транспортом CO2, как у позвоночных, гемоглобин которых находится в эритроцитах вместе с карбоангидразой.
Скорость переноса газов через дыхательную поверхность зависит от т.н. вентиляционно-перфузионного отношения (соотношения интенсивностей вентиляции и перфузии этой поверхности), а также от абсолютных минутных значений объема вентиляции и сердечного выброса. Вентиляционно-перфузионное отношение регулируется организмом таким образом, чтобы скорость газообмена соответствовала потребностям тканей. Системы этой регуляции лучше всего изучены у млекопитающих. Центральный генератор ритма, расположенный в стволе головного мозга, поддерживает ритм дыхания и стимулирует центральную интегративную область - дыхательный центр в продолговатом мозге. В состав этого центра входят инспираторные нейроны, активирующие мотонейроны, ответственные за вдох, и экспираторные нейроны, которые также посредством соответствующих мотонейронов вызывают выдох. Дыхательный центр получает информацию от нескольких типов механо- и хеморецепторов, включая рецепторы растяжения легочной ткани, реагирующие на раздувание легких, и расположенные в области разветвления сонных артерий каротидные тельца, реагирующие на повышение концентрации CO2 и понижение концентрации O2 в артериальной крови. Кроме того, этот центр активируется стимулами, которые поступают от рецепторов, воспринимающих уровень CO2/pH и расположенных здесь же в продолговатом мозгу. В ответ на поступившую информацию дыхательный центр корректирует вентиляцию (внешнее дыхание) таким образом, чтобы интенсивность газообмена соответствовала метаболическим потребностям организма. Артериальные хеморецепторы (воспринимающие изменение химического состава крови), барорецепторы (воспринимающие изменение кровяного давления) и другие сенсорные окончания посылают информацию в сердечно-сосудистый центр продолговатого мозга, где она интегрируется с сигналами из дыхательного центра. В результате обеспечивается согласованная реакция кровеносной и дыхательной систем на изменившиеся потребности животного, например при тяжелой физической нагрузке. Капиллярный кровоток модулируется в соответствии с необходимым тканям уровнем газообмена: чем активнее работает орган, тем интенсивнее в нем кровоток. Капиллярный кровоток регулируется нервами, которые управляют гладкими мышцами в стенках артериол, ведущих к данной капиллярной сети. Изменения состава крови и внеклеточной жидкости в зоне, обслуживаемой этой сетью, тоже могут вызывать сужение либо расширение артериол, влияя таким образом на количество притекающей крови и адаптируя его к потребностям тканей. Такой местный сосудосуживающий или сосудорасширяющий эффект вызывают колебания уровней CO2 и O2, а также выделение сосудистым эндотелием (внутренней клеточной выстилкой кровеносных сосудов) оксида азота, эндотелинов и простациклина.
Для поддержания нормальных функций организма животные должны регулировать pH жидкостей тела. На этот показатель влияет содержание в них CO2, дающего в растворе угольную кислоту. В условиях непрерывно идущего подкисления внутренней среды, т.е. образования протонов ( H+), для сохранения оптимального уровня pH необходимо их удаление из организма. На скорость подкисления обычно влияют особенности рациона; кроме того, у животных, обитающих в водах с кислой реакцией, протоны могут проникать в организм из окружающей среды непосредственно через поверхность тела. Запас CO2 в организме часто довольно велик, причем виды, дышащие атмосферным воздухом (в отличие от водных форм), способны его регулировать путем изменения интенсивности вентиляции. Они удаляют избыток кислоты, выделяя CO2 через легкие, а также в составе мочи. Водные животные регулируют pH, выделяя протоны не только жабрами и с мочой, но и всей поверхностью тела. См. также ДЫХАНИЯ ОРГАНЫ
.
Дыхание         

совокупность процессов, которые обеспечивают поступление в организм кислорода и выделение из него углекислого газа (внешнее Д.) и использование кислорода клетками и тканями для окисления органических веществ с освобождением содержащейся в них энергии, необходимой для жизнедеятельности (Тканевое дыхание, клеточное Д.). Бескислородный путь освобождения энергии свойствен только небольшой группе организмов - так называемым анаэробам (См. Анаэробы) (см. Брожение); в ходе эволюции освобождение энергии в результате Д. стало у подавляющего большинства организмов главным процессом, а анаэробные реакции сохранились в основном как промежуточные этапы обмена веществ (См. Обмен веществ).

Д. животных и человека. У простейших, губок, кишечнополостных и некоторых др. организмов О2 диффундирует непосредственно через поверхность тела. С усложнением организации и увеличением размеров тела появляются специальные Дыхания органы, а также система кровообращения, в которой циркулирует жидкость - кровь или гемолимфа, содержащая вещества, способные связывать и переносить O2 и CO2 (см. Гемоглобин). У насекомых O2 поступает в ткани из системы воздухоносных трубочек - трахей (См. Трахеи). У водных животных, использующих растворённый в воде O2, органами Д. служат Жабры, снабжённые богатой сетью кровеносных сосудов. В этом случае O2, растворённый в воде, диффундирует в кровь, циркулирующую в сосудах жаберных щелей. У многих рыб значительную роль играет кишечное Д., при котором воздух заглатывается и O2 поступает в кровь через кровеносные сосуды кишечника; некоторую роль в Д. рыб играет также плавательный пузырь; у многих обитающих в воде животных обмен газов (главным образом СО2) происходит и через кожу. У сухопутных животных внешнее Д. обеспечивается преимущественно лёгкими (См. Лёгкие). У земноводных и многих др. животных наряду с этим функционирует кожное Д. У птиц существенное значение имеют сообщающиеся с лёгкими Воздушные мешки, которые изменяются в объёме при летательных движениях и облегчают Д. в полёте. У земноводных и пресмыкающихся воздух в лёгкие нагнетается движениями мышц дна рта. У птиц, млекопитающих и человека внешнее Д. обеспечивается ритмической работой дыхательных мышц (главным образом диафрагмы и межрёберных мышц), координируемой нервной системой. При сокращении этих мышц объём грудной клетки увеличивается и происходит растяжение находящихся в ней лёгких; поэтому возникает разность между атмосферным и внутрилёгочным давлением и воздух поступает в лёгкие (вдох). Выдох может быть пассивным - за счёт спадения растянутой во время вдоха грудной клетки, а вслед за ней и лёгких; активный выдох обусловлен сокращением некоторых групп мышц. Количество воздуха, поступающее в легкие за 1 вдох, называется дыхательным объёмом (см. Лёгочные объёмы).

При Д. дыхательная мускулатура преодолевает эластичное сопротивление, связанное с упругостью грудной клетки, тягой лёгких и поверхностным натяжением альвеол. Последнее, однако, значительно снижается под влиянием поверхностно активного вещества, вырабатываемого клетками альвеолярного эпителия; поэтому альвеолы при выдохе не спадаются, а при вдохе легко расширяются. Чем выше эластичное сопротивление, тем труднее растягиваются грудная клетка и лёгкие; при глубоком Д. работа дыхательной мускулатуры, затрачиваемая на его преодоление, резко возрастает. Неэластичное сопротивление Д. обусловлено главным образом трением воздуха при его движении по носовым ходам, гортани, трахее и бронхам. Оно зависит от скорости потока воздуха во время Д. и от его характера. При спокойном Д. поток близок к ламинарному (линейному) в прямых участках воздухоносных путей и к турбулентному (вихревому) в местах разветвления или сужения. С увеличением скорости потока (при форсированном Д.) турбулентность возрастает и для продвижения воздуха требуется более высокая разность давлений, а следовательно, и увеличение работы дыхательных мышц. Неравномерное распределение сопротивления движению воздуха по дыхательным путям приводит к тому, что поступление воздуха в разные группы лёгочных альвеол происходит неравномерно; такая разница в вентиляции особенно значительна при лёгочных заболеваниях.

Количество воздуха, вентилирующее лёгкие в 1 мин, называется минутным объёмом дыхания (МОД). МОД равен произведению дыхательного объёма на частоту Д. (число дыхательных движений в 1 мин, равное у человека примерно 15-18) и составляет у взрослого человека в покое 5-8 л/мин. Только часть МОД (около 70\%) участвует в обмене газов между вдыхаемым и альвеолярным воздухом, эту часть называют объёмом альвеолярной вентиляции; остальная часть МОД используется для "промывания" так называемого мёртвого, или вредного, пространства дыхательных путей, в котором к началу выдоха сохраняется наружный воздух, заполнивший его в конце предшествовавшего вдоха (объём мёртвого пространства около 160 мл). Вентиляция альвеол обеспечивает постоянство состава альвеолярного воздуха (См. Альвеолярный воздух). Парциальное давление O2(pO2) и CO2 (pCO2) в альвеолярном воздухе колеблется в очень узких пределах и составляет для О2 около 13 кн/м2 (100 мм рт. cт.) и для СО2 около 5,4 кн/м2 (40 мм рт. ст.).

Обмен газов между альвеолярным воздухом и венозной кровью, поступающей в капилляры лёгких, осуществляется через альвеоло-капиллярную мембрану, общая поверхность которой очень велика (у человека около 90 м2). Диффузия O2 в кровь обеспечивается разностью парциальных давлений O2 в альвеолярном воздухе и в венозной крови (8-9 кн/м2, или 60-70 мм рт. ст.). CO2, приносимый кровью из тканей в связанной форме (бикарбонаты, соли угольной кислоты и карбгемоглобин), освобождается в капиллярах лёгких при участии фермента карбоангидразы и диффундирует из крови в альвеолы; разность pCO2 между венозной кровью и альвеолярным воздухом составляет около 7 мм рт. ст. Способность альвеолярной стенки пропускать O2 и CO2, так называемая диффузионная способность лёгких, очень велика: в покое она составляет в 1 мин примерно 30 мл O2 на 1 мм разности pO2 между альвеолярным воздухом и кровью; для CO2 эта величина во много раз больше. Поэтому парциальное давление газов в оттекающей из лёгких артериальной крови успевает приблизиться к их давлению в альвеолярном воздухе. Переход O2 в ткани и удаление из них CO2 также происходят путём диффузии, т.к. pO2 в тканевой жидкости 2,7-5,4 кн/м2 (20-40 мм рт. ст.), а в клетках ещё ниже, а pCO2 в клетках может достигать 60 мм рт. cт. (см. рис.).

Потребление O2 клетками и тканями и образование ими CO2, что составляет сущность тканевого, или клеточного, Д., - одна из основных форм диссимиляции (См. Диссимиляция), осуществляющейся у животных и растений в принципе одинаково. Высокое потребление O2 характерно для тканей почек, коры больших полушарий головного мозга, сердца. В результате окислительно-восстановительных реакций (См. Окислительно-восстановительные реакции) тканевого Д. освобождается энергия, расходуемая на все жизненные проявления. Процесс этот осуществляется в митохондриях (См. Митохондрии) и складывается из дегидрирования субстратов Д. - углеводов и продуктов их расщепления, жиров и жирных кислот, аминокислот и продуктов их дезаминирования. Субстраты Д. поглощают O2 и служат источником CO2 (отношение -

называется дыхательным коэффициентом (См. Дыхательный коэффициент)). Энергия, освобождающаяся при окислении органических веществ, не используется тканями непосредственно, т.к. около 70\% её расходуется на образование АТФ - одной из аденозинфосфорных кислот (См. Аденозинфосфорные кислоты), последующее ферментативное расщепление которой обеспечивает энергетические потребности тканей, органов и организма в целом (см. Окисление биологическое, Окислительное фосфорилирование). Т. о., с биохимической точки зрения Д. - это превращение энергии углеводов и др. веществ в энергию макроэргических фосфатных связей.

Постоянство pO2 и pCO2 в альвеолярном воздухе, а стало быть, и в артериальной крови может поддерживаться лишь при условии, если альвеолярная вентиляция соответствует скорости потребления организмом O2 и образования CO2, т. е. уровню обмена веществ. Это условие обеспечивается благодаря совершенным механизмам регуляции Д. Управление частотой и глубиной Д. осуществляется рефлекторным путём. Так, повышение pCO2 и снижение pO2 в альвеолярном воздухе и в артериальной крови возбуждают хеморецепторы синокаротидной и кардиоаортальной зон, что приводит к возбуждению дыхательного центра (См. Дыхательный центр) и увеличению МОД. Согласно классическим представлениям, повышение pCO2 в артериальной крови, омывающей дыхательный центр, также возбуждает его и вызывает увеличение МОД. Т. о., регуляция Д. по отклонению pO2 и pCO2 в артериальной крови, осуществляемая по типу обратной связи, обеспечивает оптимальный МОД. Однако в ряде случаев, например при мышечной работе, МОД увеличивается до наступления в обмене веществ сдвигов, которые приводят к изменениям в газовом составе крови. Это усиление вентиляции обусловлено сигналами, поступающими в дыхательный центр от рецепторов двигательного аппарата, двигательной зоны коры больших полушарий мозга, а также условными рефлексами (См. Условные рефлексы) на различные сигналы, связанные с привычной работой и её обстановкой. Т. о., управление Д. осуществляется сложной самообучающейся системой не только по принципу регулирования по отклонению, но и по сигналам, предупреждающим о возможных отклонениях. Смена вдоха и выдоха обеспечивается системой взаимодополняющих механизмов. Во время вдоха в дыхательный центр по волокнам блуждающих нервов поступают импульсы от рецепторов растяжения, находящихся в лёгких. При достижении лёгкими определённого объёма эта импульсация тормозит клетки дыхательного центра, возбуждение которых вызывает вдох. При выключении нервных путей, обеспечивающих поступление импульсов в дыхательный центр, ритмичность Д. сохраняется благодаря автоматизму центра, однако характер ритма резко отличается от нормального. При нарушениях Д. и механизмов его регуляции возникают изменения газового состава крови (см. Гипоксия).

Методы исследования Д. разнообразны. В физиологии труда и спорта, клинической медицине широко применяют регистрацию глубины и частоты дыхательных движений, измерения газового состава выдыхаемого воздуха, артериальной крови, плеврального и альвеолярного давления. См. также Газообмен.

Лит.: Сеченов И. М., Избр. труды, М., 1935; Холден Дж. и Пристли Дж., Дыхание, пер. с англ., М.-Л., 1937; Маршак М. Е., Регуляция дыхания у человека, М., 1961; Физиология человека, М., 1966; Comroe J. Н., Physiology of respiration, Chi., 1966; Dejours P., Respiration, Oxf., 1966.

Л. Л. Шик.

Д. растений. Д. присуще всем органам, тканям и клеткам растения. Об интенсивности Д. можно судить, измеряя количество выделяемого тканью CO2 либо поглощаемого ею O2. Более интенсивно дышат молодые, быстро растущие органы и ткани растений. Наиболее активно Д. репродуктивных органов (См. Репродуктивные органы), затем листьев; слабее Д. стеблей и корней. Теневыносливые растения дышат слабее светолюбивых. Для высокогорных растений, адаптированных к пониженному парциальному давлению O2, характерна повышенная интенсивность Д. Очень активно Д. плесневых грибов, бактерий. Д. усиливается с повышением температуры (на каждые 10°С - примерно в 2-3 раза), прекращаясь при 45-50°С. В тканях зимующих органов растений (почки лиственных деревьев, иглы хвойных) Д. продолжается (с резко сниженной интенсивностью) и при значительных морозах. Д. стимулируют механические и химические раздражения (поранения, некоторые яды, наркотики и т.п.). Закономерно изменяется Д. в ходе развития растения и его органов. Сухие (покоящиеся) семена дышат очень слабо; при набухании и последующем прорастании семян Д. усиливается в сотни и тысячи раз. С окончанием периода активного роста растений Д. их тканей ослабевает, что связано с процессом старения протоплазмы. При созревании семян, плодов интенсивность Д. уменьшается.

Согласно теории советского биохимика А. Н. Баха, процесс Д., т. е. окисление углеводов, жиров, белков, осуществляется при помощи окислительной системы клетки в два этапа: 1) активирование O2 воздуха путём его присоединения к содержащимся в живой клетке ненасыщенным, способным самопроизвольно окисляться соединениям (оксигеназам) с образованием перекисей; 2) активирование последних с освобождением атомарного кислорода, способного окислять трудно окисляемые органические вещества. По теории дегидрирования русского ботаника В. И. Палладина, важнейшее звено Д. - активация водорода субстрата, осуществляемая дегидрогеназами (См. Дегидрогеназы). Обязательный участник сложной цепи процессов Д. - вода, водород которой вместе с водородом субстрата используется для восстановления самоокисляющихся соединений - так называемых дыхательных пигментов. CO2, выделяющийся при Д., образуется без участия кислорода воздуха, т. е. анаэробно. Кислород воздуха идёт на окисление дыхательных хромогенов, превращающихся при этом в дыхательные пигменты. Дальнейшее развитие теория Д. получила в исследованиях советского ботаника С. П. Костычева, согласно которым первые этапы аэробного Д. аналогичны процессам, свойственным анаэробам. Превращения образующегося при этом промежуточного продукта могут идти с участием кислорода, что свойственно аэробам. У анаэробов же эти превращения идут без участия молекулярного кислорода. По современным представлениям, процесс окисления, который составляет химическую основу Д., заключается в потере веществом электрона. Способность присоединять или отдавать электроны зависит от величины окислительного потенциала соединения. Кислород обладает самым высоким окислительным потенциалом и, следовательно, максимальной способностью присоединять электроны. Однако потенциал кислорода сильно отличается от потенциала дыхательного субстрата. Поэтому роль промежуточных переносчиков электронов от дыхательного субстрата к кислороду выполняют специфические соединения. Попеременно окисляясь и восстанавливаясь, они образуют систему переноса электронов. Присоединив к себе электрон от менее окисленного компонента, такой переносчик восстанавливается и, отдавая его следующему компоненту с более высоким потенциалом, окисляется. Так электрон передаётся от одного звена дыхательной цепи к другому и, в конце концов, кислороду. Таков заключительный этап Д.

Все эти процессы (активация кислорода, водорода, перенос электрона по цепи на кислород) осуществляются главным образом в митохондриях благодаря разветвлённой системе окислительно-восстановительных ферментов (см. Цитохромы). По пути следования к кислороду электроны, мобилизуемые первоначально от молекулы органического вещества, постепенно отдают заключённую в них энергию, которую клетка запасает в форме химических соединений, главным образом АТФ.

Благодаря совершенным механизмам запасания и использования энергии процессы энергообмена в клетке идут с очень высоким кпд, пока недостижимым в технике. Биологическая роль Д. не исчерпывается использованием энергии, заключённой в окисляемой органической молекуле. В ходе окислительных превращений органических веществ образуются активные промежуточные соединения - метаболиты, которые живая клетка использует для синтеза специфических составных частей своей протоплазмы, образования ферментов и др. Всем этим определяется центральное место, занимаемое Д. в комплексе процессов обмена веществ живой клетки. В Д. скрещиваются и увязываются процессы обмена белков, нуклеиновых кислот, углеводов, жиров и др. компонентов протоплазмы.

Лит.: Костычев С. П., Физиология растений, 3 изд., т. 1, М.-Л., 1937; Бах А. Н., Собр. трудов по химии и биохимии, М., 1950; Таусон В. О., Основные положения растительной биоэнергетики, М.-Л., 1950; Джеймс В. О., Дыхание растений, пер. с англ., М., 1956; Палладин В. И., Избр. труды, М., 1960; Михлин Д. М., Биохимия клеточного дыхания, М., 1960; Сент-Дьердьи А., Биоэнергетика, пер. с англ., М., 1960; Рубин Б. А., Ладыгина М. Е., Энзимология и биология дыхания растений, М., 1966; Рэкер Э., Биоэнергетические механизмы, пер. с англ., М., 1967; Рубин Б. А., Курс физиологии растений, 3 изд., М., 1971; Кретович В. Л., Основы биохимии растений, М., 1971.

Б. А. Рубин.

Рис. к ст. Дыхание.

Wikipedia

Дыхание

Дыха́ние (лат. respiratio) — основная форма катаболизма у животных, растений и многих микроорганизмов. Дыхание — это физиологический процесс, обеспечивающий нормальное течение метаболизма (обмена веществ и энергии) живых организмов и способствующий поддержанию гомеостаза (постоянства внутренней среды), получая из окружающей среды кислород (О2) и отводя в окружающую среду в газообразном состоянии некоторую часть продуктов метаболизма организма (СО2, H2O и другие). В зависимости от интенсивности обмена веществ человек выделяет через лёгкие в среднем около 5 — 18 литров углекислого газа (СО2), и 50 граммов воды в час. А с ними — около 400 других примесей летучих соединений, в том числе и ацетон. В процессе дыхания богатые химической энергией вещества, принадлежащие организму, окисляются до бедных энергией конечных продуктов (диоксида углерода и воды), используя для этого молекулярный кислород.

Под внешним дыханием понимают[кто?] газообмен между организмом и окружающей средой, включающий поглощение кислорода и выделение углекислого газа, а также транспорт этих газов внутри организма по системе дыхательных трубочек (трахейнодышащие насекомые) или в системе кровообращения.

Клеточное дыхание включает биохимические процессы транспортировки белков через клеточные мембраны; а также собственно окисление в митохондриях, приводящее к преобразованию химической энергии пищи.

У организмов, имеющих большие площади поверхности, контактирующие с внешней средой, дыхание может происходить за счёт диффузии газов непосредственно к клеткам через поры (например, в листьях растений, у полостных животных). При небольшой относительной площади поверхности транспорт газов осуществляется за счёт циркуляции крови (у позвоночных и других) либо в трахеях (у насекомых). У человека в состоянии покоя газообмен через кожу с атмосферой составляет около 2—3 % от лёгочного газообмена.

Beispiele aus Textkorpus für дыхание
1. А именно, на дыхание водных организмов, дыхание бактерий.
2. Корсет сдавливает дыхание, а дыхание в современном танце - основа философии.
3. Начинающий лгун, как правило, прячет глаза, его дыхание более учащенное, или, напротив, он задерживает дыхание.
4. С Олимпиадой город приобрел второе дыхание, и это дыхание Захи Хадид.
5. Так называемое диафрагмальное дыхание, то есть дыхание животом, меняет состояние и снижает возбудимость нервной системы.
Was ist ДЫХАНИЕ - Definition